Extended Block Integrator for First-Order Stiff and Oscillatory Differential Equations

نویسندگان

  • J. Sunday
  • M. R. Odekunle
  • A. O. Adesanya
  • A. A. James
چکیده

In this paper, we consider the development of an extended block integrator for the solution of stiff and oscillatory first-order Ordinary Differential Equations (ODEs) using interpolation and collocation techniques. The integrator was developed by collocation and interpolation of the combination of power series and exponential function to generate a continuous implicit Linear Multistep Method (LMM). The paper further investigates the basic properties of the block integrator and found it to be zero-stable, consistent and convergent. The integrator was also tested on some sampled stiff and oscillatory problems and found to perform better than some existing ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

Convergence, Consistency and Stability in Fuzzy Differential Equations

In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of ...

متن کامل

An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations

In this paper, self-starting block hybrid method of order (5,5,5,5) is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or se...

متن کامل

Challenges in Geometric Numerical Integration

Geometric Numerical Integration is a subfield of the numerical treatment of differential equations. It deals with the design and analysis of algorithms that preserve the structure of the analytic flow. The present review discusses numerical integrators, which nearly preserve the energy of Hamiltonian systems over long times. Backward error analysis gives important insight in the situation, wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013